FUNGAL GROWTH ON MEDICAL DEVICES: IS CANDIDA ALBICANS CAPABLE OF FORMING BIOFILM ON A POLYSTYRENE SURFACE?

C. Bailey
Park Christian School, Moorhead

Candida albicans is a fungus that normally inhabits human microbiota without causing symptoms. When the fungus overgrows, the human host develops local yeast infections or other serious diseases like invasive candidiasis. Majority of infections caused by _C. albicans_ involve adherent cell communities called biofilms, which attach to medical devices such as catheters, dentures, and prosthetic joints. Biofilms resist anti-fungal compounds and are a gateway to re-occurring infections. The purpose of this study was to investigate if _C. albicans_ could develop biofilm on the clinically used plastic, polystyrene. It was hypothesized that _C. albicans_ would adhere to and develop quantifiable biofilm on a polystyrene surface.

Using a polystyrene-coated microtiter plate, _C. albicans_ was allowed to adhere for 90 minutes by incubation at 37°C and develop over a period of 118 hours. Biofilms were quantified using a Crystal violet assay at 24, 48, 72, and 118 hours. The data supported the hypothesis; _C. albicans_ cells adhered and developed biofilm on the plastic surface. Biofilms only developed for 24 hours, but persisted on polystyrene until 118 hours. It may be concluded that in clinical settings, _C. albicans_ can produce persistent biofilms on polystyrene-made clinical devices.

Abbreviations: C albicans — Candida albicans

Funding for materials and supplies came from the Biosciences Department at Minnesota State University, Moorhead. No conflicts of interest exist.

This paper received a 2017 Minnesota Academy of Science STEM Communicator Award. The judging process for this award satisfied the function of manuscript review.

INTRODUCTION
Fungi are commonly found in the environment, and serve as decomposers of organic matter. They are associated with human diseases such as opportunistic infections in immunocompromised individuals, and various allergic disorders. Fungal infections are a prodigious public health concern, and affect 1 billion of the world’s population. 1.5 billion people die annually from complications related to fungal disease (www.microbiologysociety.org, 2016). Increased understanding of fungal infections can enable the development of treatment and prevention strategies for individuals and those who are at high risk. The fungal species _Candida albicans_ is the focus of this study. Specifically, this study is investigates if _C. albicans_ can adhere and grow as a biofilm on a polystyrene-coated solid surface.

Candida albicans
Candida asymptptomatically inhabits human microbiota in the gastrointestinal tract, reproductive tract, oral cavity, and skin of the majority of individuals (Nobile, Johnson, 2015). _Candida_ is a type of “yeast”, and is a single celled organism. An overgrowth of _Candida_ may result in a symptomatic disease. Over twenty species of _Candida_ cause infection in humans, the most common species being _C. albicans_. This species causes 90% of reported yeast infections (Centers for Disease Control and Prevention, 2016) (Sahley, 2008) (Bennington-Castro, Sinha, 2014). An overgrowth and entry of _C. albicans_...
Candida albicans into the bloodstream results in invasive candidiasis, or candidemia. Approximately 46,000 cases of invasive candidiasis occur yearly, and these are acquired in healthcare settings (Center for Disease Control and Prevention, 2015).

Biofilms

Biofilms can be defined as a community of adherent cells, which stick to a solid surface with the help of extracellular polysaccharides, unlike free-floating cells. They have a unique ability to endure high concentrations of anti-fungal compounds. The reason biofilms can resist being terminated by anti-fungal therapy is because anti-fungal compounds target individual cells and not adherent cell groups. Additionally, the polysaccharide substance produced by cells in a biofilm can block the action of anti-fungal (Nett, 2016). Biofilms grow on artificial surfaces like medical devices including catheters, dentures, and prosthetic joints. They can also grow on biotic or biological surfaces like mucosa. Majority of Candida-caused infections involve biofilms on artificial or biological surfaces (Nett, 2016). The National Institutes of Health reported that biofilms are responsible for 80% of all microbial infections in America (Nobile, Johnson, 2015). C. albicans is known to produce highly structured biofilms with multiple cell types. They have an intricate design with yeast, pseudohyphal, and hyphal morphologies implanted in an extracellular matrix (Förster, Mogavero, Dräger, Graf, Polke, Jacobson, Hube, 2016).

HYPOTHESIS AND VARIABLES

It is reasonable to hypothesize that C. albicans will adhere to and develop as a quantifiable biofilm on a polystyrene surface. The growth environment for C. albicans, the chosen surface (polystyrene) for biofilm formation and Crystal violet based assay conditions for biofilm quantification were all maintained as controlled variables in the study. The independent variable was the time after initiating the formation of C. albicans biofilm on the polystyrene plate, and the dependent variable was the absorbance at 595 nm, which was indicative of the amount of C. albicans biofilm.

MATERIALS AND METHODS

Candida albicans growth

Candida albicans (American Type Culture Collection (ATCC #18804), Manassas, USA) was purchased as lyophilized powder and re-suspended in 5 ml of sterile water. 100 μl of re-suspended *C. albicans* was aliquoted into 1.5 ml microcentrifuge tubes. Stock yeast cultures were grown on yeast-peptone-dextrose (YPD) agar and incubated at 37°C. Before beginning the biofilm assay, liquid cultures of *C. albicans* were initiated by inoculating 30 ml of YPD media with a loopful of *C. albicans*. The cultures were grown on a shaker at room temperature for ~38 hours to allow yeast cells to reach logarithmic growth phase. For biofilm formation, cells were counted using a hemocytometer, and a suspension with 10^7 cells/ml was prepared.

Biofilm Adhesion Assay

For the adhesion assay, 100 μl of cell suspension was added to 60 wells of a 96 well polystyrene-coated microtiter plate (Fisher Scientific Inc., Asheville, NC). After 90-minute incubation at 37°C, the free-floating cells contained in the media were removed by discarding the media. The cells were washed with 200 μl of sterile Phosphate Buffered Saline (PBS; Gibco Laboratories, Gaithersburg, MD). 100 μl of 1% w/v Crystal violet was added to each well and incubated at 37°C for 20 minutes. The plate was then washed twice with 200 μl of sterile PBS. 200 μl of 95% ethanol was added to each well as a solvent for crystal violet that remained attached to the yeast cells. 100 μl of 95% ethanol was then transferred to a new microtiter plate reader for the absorbance to be measured at 595 nm using a Synergy HT plate reader (BioTek Instruments Inc., Winooski, Vermont, USA). 100 μl of 95% ethanol was maintained as a blank during absorbance measurements.

Biofilm Development Assay

For the development assay of the *C. albicans* biofilm, the cells were allowed to adhere for 90 minutes by incubation at 37°C, as previously described. After 90 minutes, the free-floating cells were removed by discarding the media, and fresh YPD media was added to each well. The biofilm was allowed to develop for up to 118 hours by incubation at 37°C, and the media was replaced daily. The amount of biofilm was quantified using a Crystal violet assay (as previously described) at 24, 48, 72, 118 hours. The readings were averaged and compared, and the p value < 0.05 for all designated times.
RESULTS

C. albicans cells adhered as biofilm to the surface of the microtiter plate after 90 minutes. Quantifiable biofilms continued to adhere and develop between 90 minutes and 24-hour time periods. Subsequently, the biofilm growth did not progress as shown in both Figures 1 and 2. The experiment and data collection lasted 118 hours.

DISCUSSION

The purpose of this study was to investigate if *C. albicans* could adhere and grow on a polystyrene surface. It was hypothesized that *C. albicans* would adhere and continue to grow as a biofilm on the previously noted surface. The data collected from this study supported the hypothesis, as proved in Figures 1-2. Development of *C. albicans* biofilm ceased progression after 24 hours. Biofilm may proliferate longer than 24 hours, but not on a polystyrene surface. The data concluded is important for a continuation of this investigation on biofilm development in relation to clinical surfaces. This study is phase one in an experiment involved with the investigation of biofilm and medical devices. The clinical relevance of fungal biofilms is substantial as a growing number of people are developing diseases that are resisting anti-fungal medication. Studies conducted on these cell communities are essential in improving treatment for diagnosed people and for disease prevention.

Figure 1: The absorbance was quantified at time periods labeled (A-E) of *C. albicans* cells and compared to regular media cells. Chart A shows significant adhesion to a polystyrene surface. Charts B-E show minimal development after a 24-hour period.

Figure 2: *C. albicans* cells adhered to a polystyrene surface after a 90-minute adhesion assay. Peak growth is between the 90 minutes and 24-hour time. The biofilm did not develop after 24 hours, but still inhabited on the microtiter plate.
ACKNOWLEDGEMENTS
This research was supported by Minnesota State University, Moorhead. A special thanks to Dr. Sumali Pandey (research mentor) for her assistance with this project.

REFERENCES CITED

MATERIALS INDEX

1. Growth Medium:
 a. Yeast-Peptone-Dextrose Agar and Broth:
 Ingredients *Broth consists of same ingredients except agar*
 i. Bacto-Agar-20g
 ii. Bacto-peptone-20g
 iii. Bacto-yeast extract-10g
 iv. Distilled water-1L
 v. Glucose-20g
 b. Sabouraud-Dextrose Agar: Ingredients
 i. Agar concentrated power-65g
 ii. Distilled water-1L
 c. Materials
 i. aluminum foil
 ii. balance
 iii. beaker
 iv. 1L bottle- autoclavable
 v. flask
 vi. petri dishes
 vii. steam autoclave
 viii. spatulas
 ix. stir bar
 x. weigh boats

2. Hemocytometer Counts
 a. Automatic pipet- specifically p 200
 b. Distilled water *interchangeably used with non-inoculated media
 c. Hemocytometer
 d. Inoculated medium (C. albicans)
 e. Manual tally counter
 f. Microscope- 40x

3. Spectrophotometer Tests
 a. Absorbance spectrophotometer
 b. Automatic pipet
 c. Chemical wipes
 d. Computer program to read data * this study used Logger Pro ver. 3.11
 e. Cuvettes
 f. YPD broth

4. Biofilm
 a. Initiating C. albicans culture
 i. Hemocytometer
 ii. Lab shaker
 iii. YPD media in petri dish
 iv. YPD broth in 50ml centrifuge tube
 b. Adhesion Assay/Development Assay
 i. Automatic pipet- specifically p 200
 ii. Cell culture
 iii. Crystal violet solution- 1% w/v
 iv. Ethanol- 95% v/v
 v. Phosphate Buffered Saline (PBS) - sterile
 vi. Non-sterile microtiter plate- 96 well reader
 vii. Polystyrene microtiter plate - 96 well
 viii. Synergy HT plate reader

5. Biosafety cabinet, cold room, incubator